skip to main content


Search for: All records

Creators/Authors contains: "Faherty, Jacqueline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present results from conducting a theoretical chemical analysis of a sample of benchmark companion brown dwarfs whose primary star is of type F, G, or K. We summarize the entire known sample of these types of companion systems, termed “compositional benchmarks,” that are present in the literature or recently published as key systems of study in order to best understand brown dwarf chemistry and condensate formation. Via mass balance and stoichiometric calculations, we predict a median brown dwarf atmospheric oxygen sink of17.82.3+1.7%by utilizing published stellar abundances in the local solar neighborhood. Additionally, we predict a silicate condensation sequence such that atmospheres with bulk Mg/Si ≲0.9 will form enstatite (MgSiO3) and quartz (SiO2) clouds, and atmospheres with bulk Mg/Si ≳0.9 will form enstatite and forsterite (Mg2SiO4) clouds. The implications of these results on C/O ratio trends in substellar-mass objects and the utility of these predictions in future modeling work are discussed.

     
    more » « less
  2. Abstract

    Multiwavelength photometry of brown dwarfs and planetary-mass objects provides insight into their atmospheres and cloud layers. We present near-simultaneousJ- andKs-band multiwavelength observations of the highly variable T2.5 planetary-mass object, SIMP J013656.5+093347. We reanalyze observations acquired over a single night in 2015 using a recently developed data reduction pipeline. For the first time, we detect a phase shift betweenJ- andKs-band light curves, which we measure to be3991.1+3.6. Previously, phase shifts between near-infrared and mid-infrared observations of this object were detected and attributed to probing different depths of the atmosphere, and thus different cloud layers. Using the Sonora Bobcat models, we expand on this idea to show that at least two different patchy cloud layers must be present to explain the measured phase shift. Our results are generally consistent with recent atmospheric retrievals of this object and other similar L/T transition objects.

     
    more » « less
  3. Abstract

    Brown dwarf spectra offer vital testbeds for our understanding of the chemical and physical processes that sculpt substellar atmospheres. Recently, atmospheric retrieval approaches have been successfully applied to low-resolution (R∼ 100) spectra of L, T, and Y dwarfs, yielding constraints on the chemical abundances and temperature structures of these atmospheres. Medium-resolution (R∼ 103) spectra of brown dwarfs offer additional insight, as molecular features are more easily disentangled and the thermal structure of the upper atmosphere is better probed. We present results from a GPU-based retrieval analysis of a high signal-to-noise, medium-resolution (R∼ 6000) FIRE spectrum from 0.85 to 2.5μm of the T9 dwarf UGPS J072227.51–054031.2. At 60× higher spectral resolution than previous brown dwarf retrievals, a number of novel challenges arise. We examine the effect of different opacity sources, in particular for CH4. Furthermore, we find that flaws in the data like errors from order stitching can bias our constraints. We compare these retrieval results to those for anR∼ 100 spectrum of the same object, revealing how constraints on atmospheric abundances and temperatures improve by an order of magnitude or more with increased spectral resolution. In particular, we can constrain the abundance of H2S, which is undetectable at lower spectral resolution. While these medium-resolution retrievals offer the potential of precise, stellar-like constraints on atmospheric abundances (∼0.02 dex), our retrieved radius is unphysically small (R=0.500.01+0.01RJup), indicating shortcomings with our modeling framework. This work is an initial investigation into brown dwarf retrievals at medium spectral resolution, offering guidance for future ground-based studies and JWST observations.

     
    more » « less
  4. Abstract

    Using a sample of 361 nearby brown dwarfs, we have searched for 4.6μm variability, indicative of large-scale rotational modulations or large-scale, long-term changes on timescales of over 10 yr. Our findings show no statistically significant variability in Spitzer’s Infrared Array Camera (IRAC) channel 2 (ch2) or Wide-field Infrared Survey Explorer W2 photometry. For Spitzer the ch2 1σlimits are ∼8 mmag for objects at 11.5 mag and ∼22 mmag for objects at 16 mag. This corresponds to no variability above 4.5% at 11.5 mag and 12.5% at 16 mag. We conclude that highly variable brown dwarfs, at least two previously published examples of which have been shown to have 4.6μm variability above 80 mmag, are very rare. While analyzing the data, we also developed a new technique for identifying brown dwarf binary candidates in Spitzer data. We find that known binaries have IRAC ch2 point response function (PRF) flux measurements that are consistently dimmer than aperture flux measurements. We have identified 59 objects that exhibit such PRF versus aperture flux differences and are thus excellent binary brown dwarf candidates.

     
    more » « less
    Free, publicly-accessible full text available May 10, 2024
  5. ABSTRACT

    At the lowest masses, the distinction between brown dwarfs and giant exoplanets is often blurred and literature classifications rarely reflect the deuterium burning boundary. Atmospheric characterization may reveal the extent to which planetary formation pathways contribute to the population of very low mass brown dwarfs, by revealing whether their abundance distributions differ from those of the local field population or, in the case of companions, their primary stars. The T8 dwarf Ross 458c is a possible planetary-mass companion to a pair of M dwarfs, and previous work suggests that it is cloudy. We here present the results of the retrieval analysis of Ross 458c, using archival spectroscopic data in the 1.0–2.4 µm range. We test a cloud-free model as well as a variety of cloudy models and find that the atmosphere of Ross 458c is best described by a cloudy model (strongly preferred). The CH4/H2O is higher than expected at $1.97^{+0.13}_{-0.14}$. This value is challenging to understand in terms of equilibrium chemistry and plausible carbon-to-oxygen (C/O) ratios. Comparisons to thermochemical grid models suggest a C/O of ≈1.35, if CH4 and H2O are quenched at 2000 K, requiring vigorous mixing. We find a [C/H] ratio of +0.18, which matches the metallicity of the primary system, suggesting that oxygen is missing from the atmosphere. Even with extreme mixing, the implied C/O is well beyond the typical stellar regime, suggesting either a non-stellar formation pathway or the sequestration of substantial quantities of oxygen via hitherto unmodelled chemistry or condensation processes.

     
    more » « less
  6. ABSTRACT

    We present a L-band (2.98–3.96 $\mu$m) spectroscopic study of eight young L dwarfs with spectral types ranging from L2 to L7. Our spectra (λ/Δλ ≈ 250–600) were collected using the Gemini near-infrared spectrograph. We first examine the young L-band spectral sequence, most notably analysing the evolution of the Q-branch of methane absorption feature at 3.3 $\mu$m. We find the Q-branch feature first appears between L3 and L6, as previously seen in older field dwarfs. Secondly, we analyse how well various atmospheric models reproduce the Lband and published near-IR (0.7–2.5 $\mu$m) spectra of our objects by fitting five different grids of model spectra to the data. Best-fit parameters for the combined near-IR and L-band data are compared to best-fit parameters for just the near-IR data, isolating the impact that the addition of the L band has on the results. This addition notably causes a ∼100 K drop in the best-fit effective temperature. Also, when clouds and a vertical mixing rate (Kzz) are included in the models, thick clouds, and higher Kzz values are preferred. Five of our objects also have previously published effective temperatures and surface gravities derived using evolutionary models, age estimates, and bolometric luminosities. Comparing model spectra matching these parameters to our spectra, we find disequilibrium chemistry and clouds are needed to match these published effective temperatures. Three of these objects are members of AB Dor, allowing us to show the temperature dependence of the Q-branch of methane.

     
    more » « less
  7. Abstract

    Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.

     
    more » « less
  8. Abstract

    We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(LBol/LSun), log(g)) determined from our model agree within 1σto SED-derived values, except forTeffwhere our retrievedTeffis approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of509+12MJup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70MJup. We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases.

     
    more » « less
  9. Abstract

    We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption.

     
    more » « less
  10. Abstract We describe a new transit-detection algorithm designed to detect single-transit events in discontinuous Perkins INfrared Exosatellite Survey (PINES) observations of L and T dwarfs. We use this algorithm to search for transits in 131 PINES light curves and identify two transit candidates: 2MASS J18212815+1414010 (2MASS J1821+1414) and 2MASS J08350622+1953050 (2MASS J0835+1953). We disfavor 2MASS J1821+1414 as a genuine transit candidate due to the known variability properties of the source. We cannot rule out the planetary nature of 2MASS J0835+1953's candidate event and perform follow-up observations in an attempt to recover a second transit. A repeat event has yet to be observed, but these observations suggest that target variability is an unlikely cause of the candidate transit. We perform a Markov Chain Monte Carlo simulation of the light curve and estimate a planet radius ranging from 4.2 − 1.6 + 3.5 R ⊕ to 5.8 − 2.1 + 4.8 R ⊕ , depending on the host’s age. Finally, we perform an injection and recovery simulation on our light-curve sample. We inject planets into our data using measured M-dwarf planet occurrence rates and attempt to recover them using our transit-search algorithm. Our detection rates suggest that, assuming M-dwarf planet occurrence rates, we should have roughly a 1% chance of detecting a candidate that could cause the transit depth we observe for 2MASS J0835+1953. If 2MASS J0835+1953 b is confirmed, it would suggest an enhancement in the occurrence of short-period planets around L and T dwarfs in comparison to M dwarfs, which would challenge predictions from planet formation models. 
    more » « less